Algorithmic Generation of DNA Self-Assembly Graphs

Grace Bielefeldt ${ }^{1}$ Iris Horng ${ }^{2}$ Holly Luebsen ${ }^{3}$ Mitchell VonEschen ${ }^{4}$

St. Olaf College ${ }^{2}$ University of Pennsylvania
ntroduction
Self-assembling nanostructures are constructed through the process of branched-junction DNA molecules bonding with each other without external guidance. We use graph theory and a flexible tile-based model to predict what structures can be produced in a laboratory setting. [1]

3-armed junction-branched DNA molecules [3]

Graph realized by pot $P=\left\{\left\{a^{3}\right\},\{\hat{a}, \hat{x}, \hat{z}\},\left\{x^{3}\right\},\{\hat{a}, \hat{b}, \hat{x}\},\{\hat{a}, \hat{b}, z\},\left\{z, \hat{z}^{2}\right\},\{\hat{b}, \hat{x}, z\},\left\{b^{3}\right\}\right\}$ using tile distribution ($1,1,1,1,1,1,1,1$)

Goal

Given a pot of tiles, P, can we algorithmically construct at least one graph and possibly all non-isomorphic graphs realized by P ?

- Input: A pot containing any number of bond-edge types

Output: All non-isomorphic graphs realized by P

Construction Matrix Algorithm

Input: $P=\left\{\{\hat{a}, b\},\{\hat{a}, \hat{b}\},\left\{a^{2}, b\right\},\left\{a^{2}, \hat{b}\right\}\right\}$

[^0]Tile proportions $=\left\langle\frac{1}{6}, \frac{3}{6}, \frac{2}{6}, \frac{0}{6}\right\rangle,\left\langle\frac{2}{6}, \frac{2}{6}, \frac{1}{6}, \frac{1}{6}\right\rangle,\left\langle\frac{3}{6}, \frac{1}{6}, \frac{0}{6}, \frac{2}{6}\right\rangle$

Prioritization Algorithms

Organizing

We can order the list of tiles by:

degree	$\left\{a^{2}, b\right\},\left\{a^{2}, \hat{b}\right\},\{\hat{a}, b\},\{\hat{a}, \hat{b}\}$
diversity	$\{\hat{a}, b\},\{\hat{a}, \hat{b}\},\left\{a^{2}, b\right\},\left\{a^{2}, \hat{b}\right\}$
Iexicographic	$\left\{a^{2}, b\right\},\left\{a^{2}, \hat{b}\right\},\{\hat{a}, b\},\{\hat{a}, \hat{b}\}$

Connecting Process

Step 1: (2) (4)	Step 2: $\stackrel{(4)}{(4)} \underset{(4)}{\leftrightarrows}$	Step 1: (®) (6)		Step 1: (4) ${ }^{-1}$	Step 2:
Step 3:	Step 4:		$\begin{aligned} & \text { Step 4: } \\ & \text { (1) } a_{a}^{a}=(\text { (2) } \end{aligned}$	Step 3: (4) ${ }^{a}$	Step 4: (1)

Connected Examples

ordering: degree
ordering: lexicographic
avoid multi-edges

Combinatorics

We count the number of permutations of edge-swaps $P=\left(\{\hat{a}, b\},\{\hat{a}, \hat{b}\},\left\{a^{2}, b\right\},\left\{a^{2}, \hat{b}\right\}\right)$, Tile Distribution $=(2,2,1,1)$

The given pot with tile distribution ($2,2,1,1$) has 5 non-isomorphic graphs

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant No DMS-1929284 while the authers were in residence at the Indation unCorant No. DMS-1929284 while the authors were in residence at the Institute for Summer@ICERM program

References

[1] Leyda Almodóvar, Jo Ellis-Monaghan, Amanda Harsy, Cory Johnson, and Jessica Sorrells. Computational complexity and pragmatic solutions for flexible tile based dna self-assembly. arXiv preprint arXiv:2108.00035, 2021.
2] Robert A Beezer and Chris Godsil. Explorations in algebraic graph theory with sage. 2015.
[3] Dan Luo. The road from biology to materials. Materials Today, 6(11):38-43, 2003.

[^0]: Output: Minimum possible order $=$

