Algorithmic Generation of DNA Self-Assembly Graphs
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Introduction

Self-assembling nanostructures are constructed through the process of
branched-junction DNA molecules bonding with each other without ex-
ternal guidance. We use graph theory and a flexible tile-based model to
predict what structures can be produced in a laboratory setting. 1
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Graph realized by pot P = {{a%}, {&, &, 2}, {z*}, {a, b, 2}, {a, b, 2}, {z, 52}, {b, &, 2}, {b*}}
using tile distribution (1,1,1,1,1,1,1,1)

Goal

Given a pot of tiles, P, can we algorithmically construct at least one
graph and possibly all non-isomorphic graphs realized by P~

= [nput: A pot containing any number of bond-edge types
= Qutput: All non-isomorphic graphs realized by P

Construction Matrix Algorithm

Input: P = {{a,b}, {a,b}, {a?, b}, {a?,b}}
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Output: Minimum possible order = 6

Tile proportions = (g, 5. 5. (6 6 6 6 (6 6

Prioritization Algorithms

Isomorphism Algorithm
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We can order the list of tiles by: a \% S a
_ _ a a b
degree  {a”,b}, {a”,b}. {a.b}, {a, b} b b b @Z -8, & ,
diversity  {a,b},{a,b}, {a? b}, {a* b} - & " &
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lexicographic | {a?, b}, {a®, b}, {&,b}, {a, b} a
dict(G) = {a: [2,1], (2,3, [5,4],[5,6], dict(&”) = {a: [2,1], [2,3], [5,4], 5,6,
Connecting Process b: [1,4],15,2],3,6]} b: [1,2], [5 4,13, 6]}
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The given pot with tile distribution (2,2, 1,1) has 5 non-isomorphic graphs
Combinatorics
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