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Introduction

Self-assembling nanostructures are constructed through the process of
branched-junction DNA molecules bonding with each other without ex-
ternal guidance. We use graph theory and a flexible tile-based model to
predict what structures can be produced in a laboratory setting. [1]

3-armed junction-branched DNA molecules [3] DNA cube

Graph realized by pot P = {{a3}, {â, x̂, ẑ}, {x3}, {â, b̂, x̂}, {â, b̂, z}, {z, ẑ2}, {b̂, x̂, z}, {b3}}
using tile distribution (1, 1, 1, 1, 1, 1, 1, 1)

Goal

Given a pot of tiles, P , can we algorithmically construct at least one

graph and possibly all non-isomorphic graphs realized by P ?

Input: A pot containing any number of bond-edge types

Output: All non-isomorphic graphs realized by P

Construction Matrix Algorithm

Input: P = {{â, b}, {â, b̂}, {a2, b}, {a2, b̂}}

t1 t2 t3 t4 −1 −1 2 2 0 a
1 −1 1 −1 0 b
1 1 1 1 1

RREF=⇒

t1 t2 t3 t4 1 0 0 −1 1/6 a
0 1 0 1 1/2 b
0 0 1 1 1/3

Output: Minimum possible order = 6
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Prioritization Algorithms

Organizing

We can order the list of tiles by:

degree {a2, b}, {a2, b̂}, {â, b}, {â, b̂}
diversity {â, b}, {â, b̂}, {a2, b}, {a2, b̂}

lexicographic {a2, b}, {a2, b̂}, {â, b}, {â, b̂}

Connecting Process

Step 1:
t1a

Step 2:
t1a

t1â
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â
b̂

ĉ
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ĉ

t1

t2
c

a
a

Step 1:

t1
a

Step 2:

t1
a

â
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Avoid both Allow multi-edges Allow loops

Connected Examples

ordering: degree

avoid multi-edges

ordering: lexicographic
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Combinatorics

We count the number of permutations of edge-swaps.

P = ({â, b}, {â, b̂}, {a2, b}, {a2, b̂}), Tile Distribution = (2, 2, 1, 1)

a

â ∏
α∈A

(
eα(G)

degα(v1)

)(
eα(G) − degα(v1)

degα(v2)

)
· · ·(

eα(G) − degα(v1) − · · · − degα(vk−1)
degα(vk)

)
= 36

Isomorphism Algorithm

4

1

5

2

6

3

b b b

a

a

a

a

dict(G) = {a : [2, 1], [2, 3], [5, 4], [5, 6],
b : [1, 4], [5, 2], [3, 6]}

canonical label: [1
∣∣6∣∣2∣∣4∣∣5∣∣3]
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dict(G′) = {a : [2, 1], [2, 3], [5, 4], [5, 6],
b : [1, 2], [5, 4], [3, 6]}

canonical label: [1
∣∣6∣∣4∣∣2∣∣5∣∣3]

Permuting graph G using (2, 1, 3) gives graph G′. G and G′ are non-isomorphic

Theorem (Canonical Labeling) [2]: G1 ∼= G2 iff c(G1) = c(G2)

Algorithm Output

The given pot with tile distribution (2, 2, 1, 1) has 5 non-isomorphic graphs
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