
Figure 1. A deep neural network of the MSP and TSP. Adapted from “Complementary 
learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with 
statistical learning,” Schapiro et al., 2017. 
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• Computations in the brain are efficient, but energy consumption is high in 
deep neural networks

Figure 3. A subset of the MNIST rotation dataset. Each digit (0-9) has 20 different 
angles of rotation. 
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• The brain consists of hierarchically structured 
multiple learning systems, which manage episodic 
and statistical learning
o Monosynaptic pathway (MSP): statistical, 

overlapping, slow learning
o Trisynaptic pathway (TSP): episodic, sparse, 

fast learning
• It is unclear how the brain arrives at multiple 

learning systems. What gives rise to these? 

Meta-Learning 
• Colloquially known as “learning to learn”
• Humans learn new concepts very efficiently. Is it possible for machines to 

do the same? 
• Continual learning — where a model is fed a large stream of data and 

needs to learn without forgetting — is difficult due to catastrophic 
forgetting or interference
o A replay buffer and sparse representations can help 

Proposal
• Meta-learn parameters m (modulates within-layer k-

winners-take-all) & LR (per-layer learning rate)

1. Initial baselines 

2. K-winners-take-all & per-layer 
learning rate 

3. Various architectures

4. New tasks and datasets
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• Base code off La-MAML, a continual online meta-learning 
model with a small replay buffer of examples from the past 

• Bi-level optimization: outer (meta) loss which updates 
hyperparameters, and inner loss (traditional optimization) 

• Train on 20 MNIST rotation tasks, each a 10-way classification 
• Analyze sparse representations of weights and biases, unit 

variance of hidden layers 

model
Figure 2. Our initial proposed meta-learned model. 

model split two-path

• Induce sparsity/inhibition in each layer through a meta-learned 
continuous multiplier; top k neurons are active 

• Learn per-layer learning rates to mirror pathways in the brain

skip two-path

Figure 4. a) Traditional k-wta implementation. b) Our modification, with a meta-
learned continuous multiplier m.

• Use task incremental learning instead of class incremental learning
• Add a set or individual label to each image; have model identify 

both image and label 
• Test on MNIST permutations and CIFAR datasets (real world 

images)

Figure 5. a) A 4-layer model. b) A skip two-path cortical-hippocampal architecture with a large h3 layer. 
c) A split two-path cortical hippocampal architecture with two options for h3 layer size.  

• 2-layer
• 4-layer
• 4-layer skip two-path; mimics two learning pathways  
• 4-layer split two-path; mimics two learning pathways 

Figure 6. a) A snippet of the MNIST permutations 
dataset. b) A snippet of the CIFAR-10 dataset. Adapted 
from “Learning where to learn: Gradient sparsity in meta and continual 
learning,” Von Oswald et al., 2021. 

Broader Implications 

Future Questions 

A Brain-like ModelFigure 7. In a 2-layer network, meta-learning the inhibition multiplier m and learning rate LR leads to a, b) efficient task 
representations and c) benefits ANN performance. 

model

Figure 8. In a meta-learned 2-layer network, hierarchically structured 
a) sparsity and b) learning rates emerge.

Figure 9. In a deeper 4-layer network, similar patterns of a) sparsity and b) learning 
rate are achieved through meta learning. 
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Figure 10. In the skip two-path architecture, the large intermediate layer h3_large becomes sparser over tasks through meta-
learning and remains sparsest of all layers. a) Average sparsity for all layers. b) Sparsity over task index. 

Figure 11. In the skip two-path architecture, higher learning rates for the large intermediate layer h3_large emerge through meta-
learning. a) Average LR for all layers. b) Average LR for all layers except for the last. c) LR over task index. 

Figure 13. In the split two-path architecture, h3_large decorrelates task 
representations more than h3_regular, similar to the TSP vs. MSP.

7a) 7b) 7c)

8a) 8b)

model

9a) 9b)

10a) 10b)

Multiple Learning Systems

11a) 11c)

split two-path

Figure 12. In the split two-path architecture, h3_large exhibits a higher level of sparsity than h3_regular and becomes increasingly 
sparse through meta-learning. a) Average sparsity for all layers. b) Sparsity of task index. 
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Figure 14. In the split two-path architecture, h3_large learns more rapidly than 
h3_regular through meta-learning. a) Average LR for all layers. b) LR over task index. 
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• Meta-learning parameters that modulate 
interference and learning results in 
efficient, sparse task representations

• Resulting architecture shows a 
hierarchal differentiation of sparsity and 
learning rates that resembles the brain! 
o MSP vs. TSP
o Hippocampus vs. neocortex

• Is sparsity (% neurons active) dependent on the size of the layer? 
• Why is learning rate generally highest in projections to the last layer? 
• Is it possible to learn the optimal architecture of a model, including number of layers, 

size of layers, and pathway projections? 
• Will meta-learning these parameters result in similar patterns and performance on 

real world images? 
• Are there sparse representations in the widely used

CNN and transformer (e.g., Chat GPT) models? 

• This work provides a general framework for neural 
architectures in the brain, such as: 
o Visual and auditory processing systems
o Grid and place cell (spatial navigation) systems
o Hippocampal-neocortical learning during sleep 

• Few-shot and reinforcement learning, as well as 
natural language processing, can be optimized with
meta-learning methods

Figure 15. Hippocampal-cortical interactions with both rapid and gradual learning, of which 
the complementary learning systems within the hippocampus are a microcosm. Adapted from “What 
Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated,” Kumaran et al., 2016. 

Figure 16. a) Grid cell and place cell systems, locations, and firing fields in
the brain. b) A plausible neural network model of the place-grid cell system. 
Adapted from “Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence,” Fernandez-Leon et 
al., 2022, and “A Model of Spatial Cell Development in Rat Hippocampus Based on Artificial Neural Network,” Yu et al., 2021. 
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