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. . These data are consistent with
recapitulates changes seenin human FOG2 S657G. the model whereby FOG2S657G
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« Metabolic dysfunction-associated Fatty Liver Disease (MAFLD) is a leading I) Overexpression of FOG2 S657G in Huh7 Cells shows increased expression of de novo lllb) Increased de novo lipogenesis and increased mTORC1
caus16 of liver disease characterized by excess lipid accumulation in the lipogenesis genes and increased TG mass. signaling in livers of Fog2 MUT mice.
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EV WT S657G b~ Figure 5: qRT-PCR of DNL genes using RNA from WT and HET mouse livers. Relative expression of canonical DNL genes
B Q. (i.e.: Srebp1c, Fascn, Acaca, & Pparg1) is significantly increased in fed mice, further supporting that S657G increases DNL
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p . . p . . &, &) &) measured by BCA and expressed as Triglyceride per mg protein. of increased phosphorylation of mMTORC1 targets including phosphorylated-S6K and phosphorylated-4-EBP.
* FOG2S657G is associated with diagnosis of liver failure/cirrhosis N=6/group Fasting Glucose
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- . chchchchch I glucose level. B) FOG2mut mice had increased glucose during IP GTT which was most pronounced post-prandially and resolved
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2) Interrogate previously published4 RNAseq & Genotype dataset of Human Figure 3: MTORC1 pathway was differentially regulated between between iPSC-hepatocytes from cell lines from individuals I I
induced pluripotent stem cell (iPSC) differentiated into hepatocytes (iHeps). with anq without Fhe Yariant. A) Volcano Plot showing 228 genes upregulated'& 288 genes doyvnregulated_ in differential gene ‘ : II e Novel FOG2 MUT mouse model shows increased expression of DNL and trends
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iii. Hierarchical Clustering of Genes in the MTORC1 pathway
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3) Developed novel mouse model with mutation analogous to S657G (termed A B . WT may promote MAFLD through
FOG2MUT) , , _ Fog2 ) mut R _ , . . increased de novo Lipogenesis (DNL) and drive increased Insulin Resistance.
i) RT-PCR and Western Blot Analysis of mouse livers of fed mice 1.5 c > * Fog2 " Figure 4: Expression of FOG2 and IGFPBP2 in FOG2mut mice.
i) Glucose Tolerance Test (GTT) was performed on 9 month old mice on chow-diet. c " 2 4 — A) Gene expression of FOG2 was similar in WT vs mice heterozygous for the mutation. . . . , _
Mice were fasted for 6 hours and blood glucose measurements were taken at 5 ? kx| oKk B) IGFBP2, a gene strongly associated with MAFLD, was differentially regulated in Future Directions: Additional experiments are necessary to determine whether
) ) o ) & ?[' 5 3d M i Huh7 and was one of the top differentially regulated genes in iHeps. Livers from FOG2 h h diated th ht inti Lch th h ch .
baseline. Male and female Fog2 MUT and WT mice were injected IP with 2g/kg o 1.0 x A Mut mice have similar pattern of IGFBP2 expression. these changes are mediate rough transcriptional changes or tnrough changes in
o A . . . ery . .
glucose and then blood glucose levels were measured over 2 hours. X y N 24 o MTORC1 signaling. Future experiments will interrogate the role of FOG2mut in
AAAAGTTGCCCACCTCGRACAGT|GTGACGACAAAATARACE 2 05 < . i g 4 relation to FAO, FA uptake, TG secretion, and whole-body insulin sensitivity.
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