Using Pathomic Imaging Data to Predict Histological Classifications of Pediatric Medulloblastoma
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Background

Medulloblastoma is one of the most common malignant brain tumors in
children

Diagnosis of medulloblastoma involves an integrated analysis of
molecular and histologic characteristics

Pathology and radiology data collected through standard clinical care of
pediatric neuro-oncology patients could offer predictive value in novel
characterization of tumor types

Machine learning methods have promise in harnessing the data to
perform predictive forecasting and aid in clinical decision-making

- Objective ~

Implement and evaluate the effectiveness of pathomic and radio-
pathomic features in predicting clinically-relevant properties of

pediatric medulloblastoma.
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There exists independent radiomic and pathomic analyses in pediatric
neuro-oncology, but integrated radio-pathomic analyses are limited

Micro-scale pathology data can provide insight into the biological
meaning of macro-scale radiomic features, of which little is known

Previous radio-pathomic analyses for pediatric brain tumors are limited
by small sample sizes
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Feature extraction

Model Learning

« Compiled a dataframe of median values of nuclei data for each tile

« Tested different resampling methods and number of features selected
based on ANOVA of features and histological classifications

« Trained an SVC with grid search for parameter optimization
« Used five-fold cross validation with stratification of histological classes
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Histological categories extracted from clinical pathology notes by
team member into classic, desmoplastic, large cell/anaplastic
(LCA) categories
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Results - Continued
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Summary of Main Findings

« Under-sampling the entire dataset with feature selection resulted in best
model performance (0.84 AUC) compared to the control (0.50 AUC)

« Feature selection resulted in less discrepancy between precision and
recall compared to no feature selection but had little effect on AUC

Conclusions

« Under-sampling the entire dataset shows promising results but is
limited in practice due to lack of generalizability

» The success of under-sampling the dataset may be due to removal of
noisy data

Next Steps

« Remove uninformative tiles from dataset to improve data quality

« Try other classification algorithms to improve model performance
« Train and test model to classify samples into genomic categories
« Incorporate radiomic data to create integrated radio-pathomic model
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