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Abstract Data Preparation

Data preparation took place largely in two parts: text data preparation and CT scan data
preparation. Firstly, text data preparation incorporated cleaning a large patient database
Including information like age, previous conditions, BMI, and other information that would
be included by a doctor in a clinical note. | wrote a Python script to turn this information,
which was maintained in a spreadsheet-like format, into a natural language clinical note
for each patient. | then wrote a new column into the spreadsheet including this note. For
the next step, | had to convert the CT scan files, which were provided in Dicom format, to
the Nifti format, which proved to be very challenging. Dicom is a 2D format representing
cross sections of the scan, meaning 20-25 Dicom files are required to represent one CT
scan. However, the Nifti format is one file that represents a 3D image, and thus is more
commonly used for inputs to vision language models such as MM-LLM-RO. The script |
wrote to convert the file took approximately 4 seconds per sample to run.

Tumor segmentation from CT scans is a task
typically performed by trained professionals in
practice. However, the advent of vision language
models (VLMs) present an alternative, machine-
learning based approach to tackling this task. We
explored the usage of MM-LLM-RO, a VLM, in the
context of volume contouring for lung cancer.
Although no state-of-the-art performances were
matched, we discovered modest performances after
training the model over a span of 1000 epochs,
which took approximately 18 hours on 2 NVIDIA A40
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Background and Architecture

In November 2023, a paper titled MM-LLM-RO was published by Oh et. al. The paper introduced a convolutional U-Net with cross-attention
mechanisms to output a segmentation mask on a CT scan predicting the location of a tumor. The model first utilizes downsamples the initial CT
scan to a lower dimensional space to learn more meaningful features. Simultaneously, a natural language doctors note is converted into a
sequence of tokens via a Llama encoder, with learnable artificial tokens prepending the actual sequence via a prompt tuning mechanism. At each
downsampling step, the self-attention adjusted text sequence is projected to the same dimensionality as the current dimensionality of the image
sequence via a linear layer, after which cross-attention is conducted between the image and text sequences, which are now of the same
dimensionality. This is performed until the CT scan representation reaches the “bottom” of the U-Net architecture in its lowest dimensionality.
Afterwards, the representation is upsampled back up to original dimensionality, with the initial representation during the downsampling phase pre-
attention is concatenated with this representation as part of a residual layer. Once mapped back to the CT scan representation, softmaxis applied
to arrive at per-voxel probabilities. The model is trained with a weighted loss combining binary cross entropy and a DICE loss.

1 Volumetric Segmentation with the 3D U-Net
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Results
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1D Avr Dice |loU H epoch, loss, mean, ptv, ctv, gtv

60, 1.025, 0.000019, 0.000
100 0.888 65, 0.982, 0.031315, 0.031
129 0.589 70, 0.935, 0.094633, 0.095
75, 0.917, 0.126797, 0.127

40 0.7 , = :
140 0.788 80, 0.852, 0.228411, 0.228
177 0845 85, 0.828, 0.263805, 0.264
183 0. 855 90, 0.792, 0.290622, 0.291
95, 0.830, 0.227073, 0.227
201 0.854 100, 0.835, 0.247232, 0.247
265 0.723 105, 0.693, 0.427618, 0.428
110, 0.755, 0.362875, 0.363
366 0.87 115, 0.819, 0.252012, 0.252
378 0801 120, 0.706, 0.406319, 0.406
444 0.272 125, 0.706, 0.414761, 0.415
: 130, 0.729, ©.391443, 0.391
468 0.311 135, ©.712, 0.360358, 0.360
50 0691 140, 0.701, ©.372080, 0.372
145, 0.734, 0.325806, 0.326
224 0.74 150, 0.659, 0.429564, 0.430
542 0.752 155, 0.639, 0.438234, 0.438
773 0.461 160, 0.672, 0.420778, 0.421
: 165, 0.685, 0.375816, 0.376
791 0.557 170, 0.623, 0.440226, 0.440
792 047 175, 0.679, ©.389830, 0.390
180, 0.658, 0.403954, 0.404
877 0.712 185 0.632, 0.426750, 0.427
878 0.728 190, 0.628, 0.450067, 0.450
195, 0.587, 0.502042, 0.502
882 0.655 200, 0.537, ©.534581, 0.535

The left image appears to represent the average loU and
Dice loss score for each of the images in the validation
dataset after the model is trained. The right image is a
picture of the loss logs over the model’s training
horizon, indicating decreasing losses over the 1000
epoch training period. Note that not all 1000 epochs are
iIncluded in this picture due to sizing limitations.
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