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Tieadind ) Y L ane VarEEensl AUeRRnesears: - Removing zero padding led in the loss function
- Composed of 2 “triggers” that filter out data using

reduced some of the bias with regards to the
number of objects. (See Figures 4 & 8)
- Low energy jets, especially in the trigger, have a

machine learning models that only save collisions that
appear anomalous to the low-energy collisions the model

is trained on lot of noise and uncertainty, because there tends
B Level 1 Trigger (L1): filters 1B to 100,000 collisions Figure 2: Base Trainer HLT ROC Curve Figure 5: Improved Trainer HLT ROC Curve Figure 9: Imp Trainer HLT Effici b i il ' di L
per second Trained over HLT objects Trained over HLT objects EMmSEncy;PIcts o to be more pile up (particles and jets originating

from a different proton-proton collision) at low
energies. To reduce the effect of this noise, all jets
below 50 pt GeV were zeroed out.

- High-Level Trigger (HLT): filters 100,000 collisions
to 3000 per second

True Positive Rate

The Dataset

- The dataset was composed of data from the LHC, as well as I ] ] . =
monte carlo simulations of various collisions. T reterts ’ folse postivefte
= The hope is that model classifies types of collisions that Figure 3: B“::i“:[]":b‘::sc CUIve FEPTOEE (e WE R () ES G
are rarer and of more high energy as anomalous, while o ! Hojed over Ll pects
classifying the dijets, which make up the majority of
collisions, as background.

- Each datafile is composed of over tens of thousands collisions,
which are made up of 60 numbers representing the
momentum (pt) and angles (eta and phi) of 10 jets, 3
electrons, 3 muons, 3 photons, and the missing transverse
momentum (MET).
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Future Directions

Figure 4: Sample Base Trainer

- Plot more histograms and find patterns in data to
find better training data combinations and
transformations

- Try more variations to the traditional autoencoder
and consider other types of autoencoders
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- The ATLAS Trigger System is exploring machine learning
methods of anomaly detection programmed onto FPGAs to

filter out data to save s o
- Expand upon efficiency plots by slicing the datasets

- This project analyzes the performance of various P bt . . e . .
Figure 10: Difference in Signal Acceptance in HLT Trigger in more ways and comparing models not just

autoencoders, a type of neural network that compresses data Figure 4: Sample Base Trainer Figure 8: Sample Improved Trainer Signal Efficiences, HIT Objects i el
signals within one model

into fewer dimensions and then attempts to reconstruct it. Object MUI:E V’Q:"’f“:’“” HistogramBRObjact M“: v :’:mf°°:ew2° Histogramy
- For each collision an anomaly scores is calculated by taking 1

the Mean Squared Error between the inputs and outputs. )
- The algorithm classifies a collision as anomalous if the

anomaly score is greater than a threshold determined by the

True Positive and False Positive rates of the ROC Curve
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