
From NeRFs to Gaussian Splats, and Back
Siming He, CIS 2025

Collaborator: Zach Osman; Mentor: Pratik Chaudhari, ESE

Overview

NeRF stores the 3D geometry and photometry
information of an environment into a neural
network.

PRViWiRQ
EQcRdiQg

BaVe NeWZRUk SemaQWic NeWZRUk

CRlRU NeWZRUk

Color and density at
the location

Gaussian Splatting (GS) stores the same
information into a set of Gaussians.

NeRF

GS

Generalize
from few

ego-centric
views

Compact
storage

Fast
rendering

Handle
dynamic
scene

Qualitative Results

We develop a procedure to go back and forth between NeRF and GS,
leveraging the strengths of both approaches.

Converting a NeRF to GS allows fast rendering &
accurate geometry.

NeRF generalizes better than GS.

NeRFGS can be edited easily before converting
back to a NeRF.

Glossary
NeRF-SH: a NeRF method.
Splatfacto: a GS method.
NeRFGS: our method of converting NeRF to GS.
GSNeRF: our method of converting GS to NeRF

New Dataset

A lot of datasets, e.g., Aspen and Giannini Hall,
have similar training & validation views. We
created two new scenes, named Wissahickon
and Locust-Walk where training and validation
views are very different.

Quantitative Results
Iterations Aspen Giannini Hall Wissahickon Locust Walk

(⇥102) PSNR (Val) SSIM LPIPS PSNR (Val) SSIM LPIPS PSNR (Train/Val) SSIM LPIPS PSNR (Train/Val) SSIM LPIPS

Nerfacto-big [1] 300 17.75 0.5 0.43 20.11 0.68 0.3 22.17 / 20.75 0.75 0.26 22.29 / 21.49 0.8 0.3
Splatfacto [1] 300 17.63 0.5 0.39 20.87 0.7 0.33 23.46 / 14.62 0.55 0.45 24.04 / 17.72 0.7 0.31
NeRF-SH 300 17.73 0.48 0.45 19.89 0.65 0.32 22.41 / 17.46 0.61 0.39 21.73 / 18.74 0.7 0.33

RadGS [23] 1 11.65 0.28 0.74 12.37 0.49 0.61 12.4 / 15.17 0.62 0.46 10.84 / 11.85 0.6 0.46
RadGS [23] 10 17.85 0.51 0.44 20.84 0.72 0.3 20.7 / 20.73 0.76 0.29 21.15 / 21.04 0.8 0.25

NeRFGS 0 13.96 0.3 0.58 16.19 0.47 0.49 - / 14.40 0.47 0.51 - / 14.87 0.51 0.47
NeRFGS 1 14.06 0.34 0.57 15.73 0.53 0.46 16.62 / 17.07 0.63 0.4 15.7 / 17.22 0.65 0.37
NeRFGS 10 17.7 0.51 0.4 21.05 0.73 0.26 20.67 / 20.64 0.75 0.27 21.11 / 21.14 0.8 0.24

GSNeRF 50 18.1 0.44 0.44 21.22 0.69 0.31 - / 17.65 0.63 0.39 - / 19.32 0.71 0.33
GSNeRF 300 18.58 0.51 0.36 23.71 0.82 0.17 - / 17.59 0.64 0.37 - / 19.32 0.72 0.31

Table 2. Quantitative Results. We calculate PSNR, SSIM, LPIPS for different models and scenes. For Wissahickon and Locust Walk, where validation views
are dissimilar to training views, we additionally show the training PSNR since we notice a larger gap between the training and validation PSNR for Splatfacto
compared to other methods. In contrast, the rendering quality at validation views is already reasonable for NeRFGS after 100 iterations of fine-tuning. After
training for 1000 iterations, NeRFGS has better quality than Splatfacto and NeRF-SH. Compared to RadGS, the convergence is faster, i.e., better results after
100 iterations, also shown in Fig. 5. GSNeRF also trains much faster and results in better quality, see Fig. 5. All GS based methods can render at more than 40
FPS on GeForce RTX 4090. Training for 100 iterations takes about 6 and 3 seconds, respectively, for NeRF-based and GS-based methods. GSNeRF was
supervised using the Gaussians obtained from NeRFGS with 5000 iterations.

recovers better geometry with limited views. NeRFs are also
a more compact representation and require less memory than
GS. This is important for resource-constrained robots. The
difference is rather obvious for distilled feature fields. NeRF-
based methods [14, 25] can store high-dimensional features
efficiently. GS-based methods [26–28] need additional steps
to compress features.

Explicit representations can achieve faster rendering than
implicit ones. High-speed rendering is important in robotics
for localization (which requires checking many views to as-
certain visual overlap with the current observation), planning
(which requires synthesizing new views along putative tra-
jectories), etc. Explicit representations can also be modified
easily, e.g., by updating the Gaussians. This is useful for
robots that operate in dynamic environments. Modifying
implicit representations requires expensive re-training or
complex modeling [29–33].

We develop a procedure to go back and forth between
implicit and explicit representations. We evaluate the quality
and efficiency of this approach using a number of existing
datasets. We study this approach on views recorded from
an ego-centric camera along hiking trails in situations when
evaluation views are dissimilar to training views. We show
that our approach achieves the best of both NeRFs (superior
PSNR, SSIM, and LPIPS on the dissimilar views, and a com-
pact representation) and GS (real-time rendering and ability
for easily modifying the representation). The computational
cost of converting between these representations is minor
compared to training from scratch.

Results Tab. 1 provides a brief summary of the the differ-
ent approaches. We modify Nerfacto to predict spherical
harmonics (degree 3, i.e., 16 coefficients) for each RGB
channel. The volume rendering equation remains unchanged:
we calculate the RGB color from spherical harmonics using
the viewing direction before integrating it along the ray.

Given such a trained “NeRF-SH”, we calculate a point-
cloud of the scene using the median depth along 2⇥106

rays rendered from training views. We ensure that these
rays have high opacity and do not correspond to the sky.

Isotropic Gaussians are initialized at each of these points
using the density and spherical harmonics predicted by the
NeRF-SH. The scale of each Gaussian is half of the average
distance between each point and its three nearest neighbors.
Without any further optimization, this “NeRFGS” already
captures geometric and photometric properties of the scene
impressively well; see Fig. 2 and Tab. 2. We can fine-tune it
further using training views; see Fig. 3 and Tab. 2.

For GSNeRF, we render images using NeRFGS from
training views, and fit or update a NeRF-SH. We noticed
that training NeRFs using GS-rendered views gives better
PSNR, SSIM, and LPIPS as compared to using the original
images; see Fig. 5 and Tab. 2. This is perhaps due to the
absence of high-frequency structures in the GS-rendered
views. One might also be interested in converting an explicit
representation back into an implicit one. We show an example
in Fig. 4 where we manually edit out the lamp-post by
selecting the corresponding splats in NeRFGS and updating
the NeRF through GSNeRF in 4.8 sec.

Figure 5. NeRFs can be efficiently converted to high-quality Gaussian

splats. We report the PSNR, SSIM and LPIPS on validation data as a
function of training progress for Aspen. After 1000 iterations of fine-tuning,
NeRFGS performs comparably or better than NeRF-SH and Splatfacto.

Discussion We demonstrated a simple procedure to convert
between implicit representations of the scene such as NeRFs
and explicit representations such as Gaussian splatting (GS).
These ideas are useful to handle situations with sparse views,
which are commonly encountered in robotics. There are
many ways one might build upon this work. Notice that
in Tab. 2 the PSNR of NeRFGS without fine-tuning is lower
than that of NeRF-SH. This indicates that there is a large
degree of inefficiency in how we convert NeRF-SH into the
explicit representation.

As
pe

n

Supported by Vagelos
Undergraduate Research
Grant and Class of 1971
Robert J. Holtz Fund Grant.

Scan
Me

