

From NeRFs to Gaussian Splats, and Back

Siming He, CIS 2025 Collaborator: Zach Osman; Mentor: Pratik Chaudhari, ESE Supported by Vagelos Undergraduate Research Grant and Class of 1971 Robert J. Holtz Fund Grant.

Overview										
<u>NeRF</u> stores the 3D geometry and photometry information of an environment into a neural network.										
Reverse Sematic Network	Generalize from few ego-centric views	Compact storage	Fast rendering	Handle dynamic scene						
Gaussian Splatting (GS) stores the same information into a set of Gaussians.										

We develop a procedure to go back and forth between NeRF and GS, leveraging the strengths of both approaches.

Glossary

NeRF-SH: a NeRF method.

Splatfacto: a GS method.

NeRFGS: our method of converting NeRF to GS. GSNeRF: our method of converting GS to NeRF

Qualitative Results

NeRF generalizes better than GS.

New Dataset

A lot of datasets, e.g., Aspen and Giannini Hall, have similar training & validation views. <u>We</u> <u>created two new scenes, named Wissahickon</u> <u>and Locust-Walk where training and validation</u> <u>views are very different.</u>

Converting a NeRF to GS allows fast rendering & accurate geometry.

Quantitative Results

	Iterations	Aspen			Giannini Hall		Wissahickon			Locust Walk				
	$(\times 10^2)$	PSNR (Val)	SSIM	LPIPS	PSNR (Val)	SSIM	LPIPS	PSNR (T	Train/Val)	SSIM	LPIPS	PSNR (Train/Val)	SSIM	LPIPS
Nerfacto-big [1] Splatfacto [1] NeRF-SH	300 300 300	17.75 17.63 17.73	0.5 0.5 0.48	0.43 0.39 0.45	20.11 20.87 19.89	0.68 0.7 0.65	0.3 0.33 0.32	22.1 23.4 22.4	7 / 20.75 6 / 14.62 1 / 17.46	0.75 0.55 0.61	0.26 0.45 0.39	22.29 / 21.49 24.04 / 17.72 21.73 / 18.74	0.8 0.7 0.7	0.3 0.31 0.33
RadGS [23] RadGS [23]	1 10	11.65 17.85	0.28 0.51	0.74 0.44	12.37 20.84	0.49 0.72	0.61 0.3	12. 20.	.4 / 15.17 .7 / 20.73	0.62 0.76	0.46 0.29	10.84 / 11.85 21.15 / 21.04	0.6 0.8	0.46 0.25
NeRFGS NeRFGS NeRFGS	0 1 10	13.96 14.06 17.7	0.3 0.34 0.51	0.58 0.57 0.4	16.19 15.73 21.05	0.47 0.53 0.73	0.49 0.46 0.26	16.6 20.6	- / 14.40 52 / 17.07 57 / 20.64	0.47 0.63 0.75	0.51 0.4 0.27	- / 14.87 15.7 / 17.22 21.11 / 21.14	0.51 0.65 0.8	0.47 0.37 0.24
GSNeRF GSNeRF	50 300	18.1 18.58	0.44 0.51	0.44 0.36	21.22 23.71	0.69 0.82	0.31 0.17		- / 17.65 - / 17.59	0.63 0.64	0.39 0.37	- / 19.32 - / 19.32	0.71 0.72	0.33 0.31

NeRFGS can be edited easily before converting back to a NeRF.

