

Enabling Visual Recognition at Radio Frequency

Haowen Lai, Gaoxiang Luo, **Freddy Yifei Liu**, Mingmin Zhao Department of Computer and Information Science

BACKGROUND

RF Sensing

Resilient to dust, smoke, adverse lighting Low resolution

Learning based solutions

- Rely on category specific priors
- Not applicable as a general sensing solution

SAR based solutions

- Large cumbersome setup
- Long scanning times
- Does not work with external motion

OUR APPROACH

Hardware Design: Rotating mmWave Radar

System Overview

Achieve LiDAR comparable range images and visual recognition

CONTRIBUTIONS

- Novel design that integrates a off the shelf mmWave radar with a motor
- New motion estimation algorithm for coherent combination of radar signals
- Innovative neural network for efficient 3D imaging using 2D convolutions

RESULTS

Visual Recognition Performance

Range Absolute Error		Surface Normal Error	
mean	median	mean	median
15.76 cm	3.39 cm	8.83°	2.17°
Semantic Segmentation		Object Detection	
mloU	рАсс	AP30	AP50
48.00	86.33	52.34	38.30

Point Cloud Visualization

Performance Through Smoke

CONCLUSIONS

- First RF imaging system with resolution comparable to LiDAR
- Enabling first visual recognition at RF
- We release code and dataset to facilitate future research in this direction

ACKNOWLEDGEMENTS

This research is supported by the Grants for Faculty Mentoring Undergraduate Research