
Expanding FIBERS Evolutionary Feature Binning to Automatically Optimize Number of Risk Groups in Biomedical Survival Analysis

¹SEAS 2027, University of Pennsylvania, ²Cedars Sinai Medical Center, ³Perelman School of Medicine

Background

- Survival analyses are essential in biomedical research for understanding the time until an event of interest, such as organ failure or patient death.
- Our research aims to identify risk factors for kidney allograft failure (GF).
- The Human Leukocyte Antigen (HLA) system, encoded by genes within the Major Histocompatibility Complex (MHC) on chromosome 6, drive the human immune response¹
- HLA genes code for proteins that help the immune system distinguish between self and non-self¹
- HLA matching is a process that compares the HLA types of a patient and potential donor to determine if they are a match for a transplant.
- Traditional methods of kidney matching relied on antigen-level mismatches (MMs) in HLA • This fails to account for the variability at the amino acid (AA) level^{2,3}.

FIBERS

Fig. 1: schematic of FIBERS algorithm

Bin Thresholds

- Previous versions of FIBERS optimized bins of AA-MM features based on their ability to stratify donor-recipient pairs into two kidney GF risk groups (low and high) through one threshold value^{2,3}.
- Feature List Threshold Example FIBERS Bin -F1 + F2 + F4 > Threshold1 F1 | F2 | F4 No Mismatches in B
 Mismatch(es) in Bin Adaptive Low Risk Group Group thresholding³: High Risk ID F1 F2 F3 F4 F5 Time Censor **Bin Sum** Assignment Group optimizes 1.0 Low 0.5 0 0 High 1 1 2 thresholds of bins Time to Event (Graft Failure) High 1.8 2 1 0 1 0 0 when toggled on. 0 0 0 0 1.9 Low Fig. 2: FIBERS bin details

FIBERS can be run in **two** ways in regards to thresholds:

- A threshold is inputted. All bins have this same threshold. Features will be optimized
- 2. No threshold is inputted. Thresholds vary. Features and thresholds optimized

https://github.com/UrbsLab/scikit-FIBERS https://github.com/UrbsLab/scikit-FIBERS/tree/varshney Contact

pvarsh@seas.upenn.edu Ryan.Urbanowicz@cshs.org

Praneel Varshney¹, Ryan J. Urbanowicz², Malek Kamoun³

Methodology

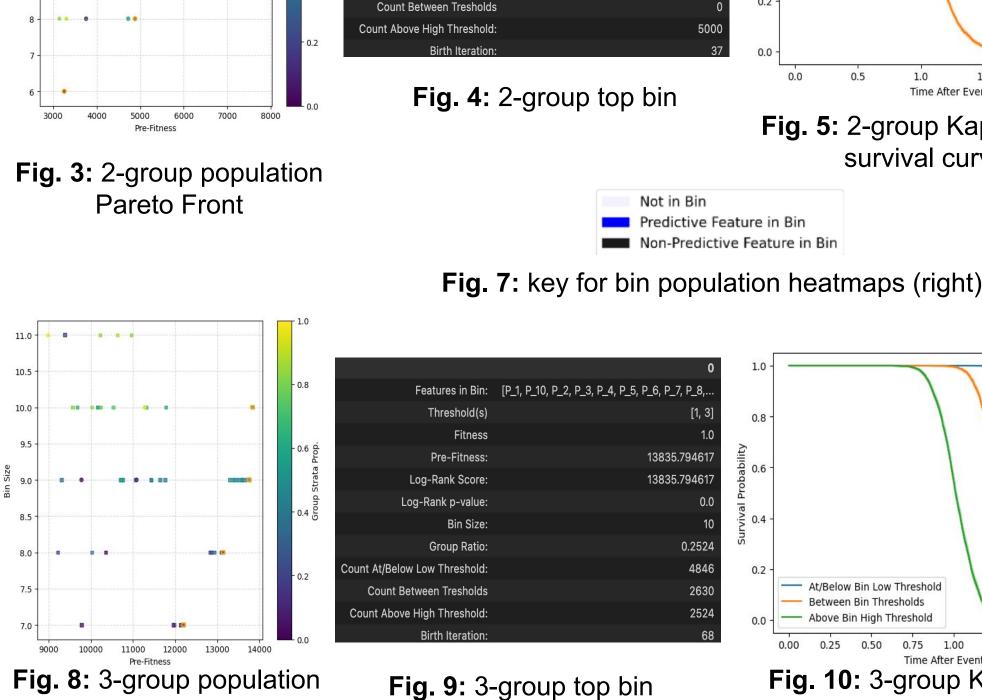
OBJECTIVE: Flexibly expand FIBERS to be able to discover and consider bins with multiple (3) risk groups

- Practical use: FIBERS bins can offer more flexible recommendations for potential kidney donor/recipient pairs
- Reduce assumptions about the ideal threshold(s) for optimal bins
- Enable FIBERS to explore the threshold space Ο
 - Allow FIBERS to evaluate 2-group and 3-group bins simultaneously
 - Retain FIBERS current function with only 2-group bins

. . . .

- Redefine bin fitness evaluations:
 - Fitness should be applicable to multi-group bins
 - Fitness should be comparable across 2-group and 3-group bins

.......


.

Simulated data parameters	
Instances	10000
Total features	100
Predictive features	10
Low risk proportion	0.5
Ground-truth threshold	3
(2-group dataset)	ა
Ground-truth thresholds	1 2
(3-group dataset)	1,3

FIBERS run parameters	
Iterations	100
Population size	50
Threshold evolving probability	0.5

Top bins

- Achieve the correct
- ground-truth thresholds
- that were optimal by the
- simulation data • Include all predictive
- features and no
- non-predictive features

Pareto Front

Features in Bin: [P_1, P_10, P_2, P_3, P_4, P_5, P_6, P_7, P_

Threshold(s)

Pre-Fitness

Log-Rank Score:

Log-Rank p-value:

nt At/Below Low Threshold:

Fitness

Bin Size:

Group Ratio:

ONCLUSIONS:

- FIBERS 3.0 adds 3-group functionality while maintaining 2-group functionality
- 3-group runs require greater iterations or population to maintain accuracy Significant runtime increases (4x) observed with multi thresholding on
- Occurs because FIBERS must explore a larger threshold space • Bins with larger thresholds are discovered in later iterations
 - Larger threshold bins have more features which take longer to discover

FUTURE DIRECTIONS:

- Grid search for hyperparameter tuning
- Experimental analysis to show flexibility of the algorithm Full simulation study with with 30 replicates (same data/FIBERS configs but different random seeds), threshold combinations, and
- different dimensions
- Determine FIBERS 3.0 strengths and weaknesses • Apply to real-world Scientific Registry of Transplant Recipients (SRTR) data

Analysis & Preliminary Results

0.0

7777.4330

7777.4330

• METHODS:

- 1. Implement new fitness metrics: Multivariate Logrank test and Kruskal-Wallis
- 2. Expand FIBERS to only consider bins with 3 groups
- Bins will include a **list** of thresholds rather than a single threshold value a.
- 3. Update genetic operators to modify thresholds
- a. Uniform crossover, mutation, merge
- 4. Reincorporate 2 group bins with 3 group bins
 - a. Introduce new toggleable parameter: multi thresholding
 - True \rightarrow 2 and 3 group bins will be explored
 - ii. False \rightarrow only 2 group bins will be explored (original function)
- 5. Test FIBERS 3.0 functionality with 2-group and 3-group simulated data

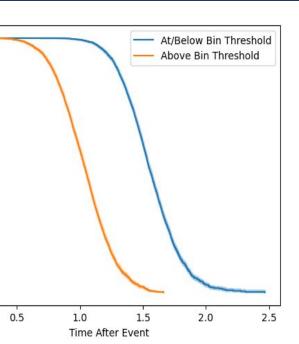


Fig. 5: 2-group Kaplan Meier survival curves

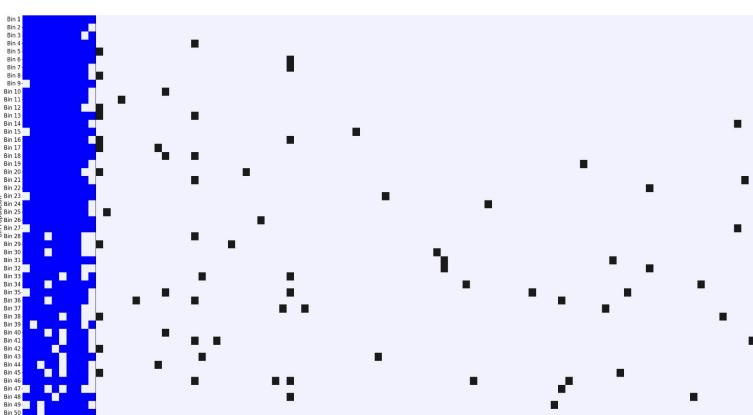
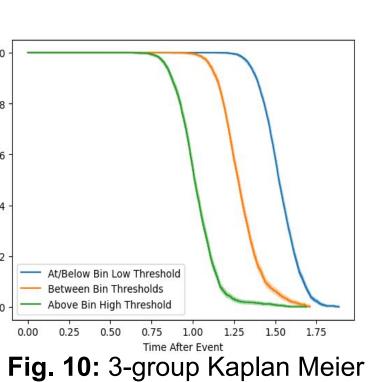



Fig. 6: 2-group bin population heatmap

survival curves

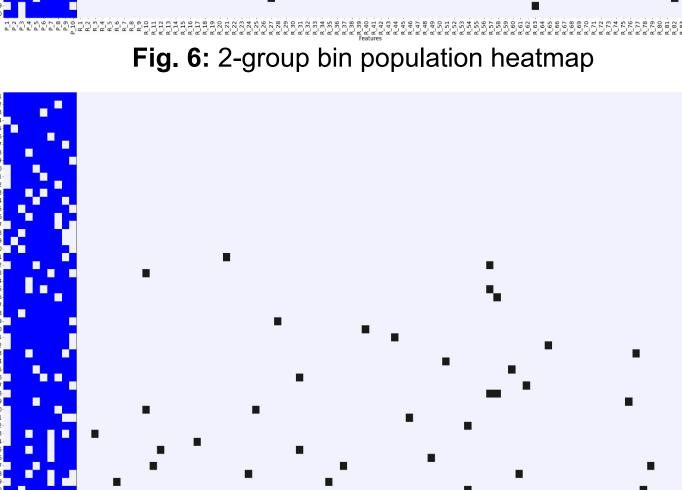


Fig. 11: 3-group bin population heatmap

Conclusions & Future Directions

References

- Pedro A. Reche, Ellis L. Reinherz, Sequence Variability Analysis of Human Class I and Class II MHC Molecules Functional and Structural Correlates of Amino Acid Polymorphisms, Journal of Molecular Biology, Volume 331, Issue 3, 2003, Pages 623-641, ISSN 0022-2836, https://doi.org/10.1016/S0022-2836(03)00750-2.
- Dasariraju, S., Gragert, L., Wager, G.L., McCullough, K., Brown, N.K., Kamoun, M. and Urbanowicz, R.J., 2023. HLA amino acid Mismatch-Based risk stratification of kidney allograft failure using a novel Machine learning algorithm Journal of Biomedical Informatics, 142, p.104374.
- Urbanowicz, R., Bandhey, H., McCullough, K., Chang, A. Gragert, L., Brown, N., Kamoun, M., 2024, April. FIBERS 2.0: Evolutionary Feature Binning For Biomedical Risk Stratification in Right-Censored Survival Analyses With Covariates.