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• Anomalies, such as jumps and glitches (fig. 1),                           

often occur in the time-series data produced      

by astronomical instruments (e.g., the Simons  

Observatory). 

• Identifying and addressing these anomalies is       

crucial for creating accurate datasets, which              

are essential for investigating the universe’s       

evolution.

• Currently, Fourier transforms are widely         

used for anomaly detection by decomposing signals into 

sinusoidal functions. However, this method struggles with 

signals that exhibit numerous anomalies and does not provide 

information about when these anomalies occur.

• Wavelet transforms present a promising alternative to Fourier 

transforms for anomaly detection by using wavelets localized 

in frequency and time, allowing them to better reveal localized 

features.

• This project focused on evaluating the feasibility and accuracy 

of the Mallat-Zhong Discrete Wavelet Transform   (MZ-

DWT) algorithm for detecting these anomalies.1, 2

• Implemented the MZ-DWT in a python environment.3

• Utilized the wavelet transform to calculate alpha (α) (fig. 2), 

which is based on the Lipschitz and Hölder Continuities. 4

• α provides insights into signal behavior at discrete timepoints 

(e.g., α ≈ 0 → jump, α ≈ -1 → glitch).4

• Improved algorithms and runtime with simulated data (fig. 3).

• Utilized real-data to calculate           

false positive and negatives.

• This project has demonstrated that wavelet transforms are 

a promising tool for detecting anomalies in time-series 

data. 

• These transforms can identify anomalies with a high degree of 

accuracy, even those as small as 8 times the white noise level.

• Future steps for this project include optimizing runtime, using 

transform data to quantify the size of anomalies, and 

comparing the performance of wavelet transforms with 

existing Fourier transform methods.

• Ultimately, wavelet transforms could become an invaluable 

tool in the data processing pipeline for astrophysics 

instruments, helping researchers uncover the secrets of the 

universe’s evolution.
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Figure 1: An example of a 

glitch in the raw data 

collected from the Simons 

Observatory.

Figure 2: Equation for calculating α, where Wf represents 

the wavelet transform and s denotes the scale.

Figure 3: Example of simulated data (right) and the 

corresponding wavelet transform (left).

Figure 4: The anomaly detection method identifying a glitch 

(indicated by the red dotted line) in the dataset from Fig. 1.

Figure 7: Heatmap showing false positive rates for various 

combinations of input parameters.

Figure 8: Heatmap showing false negative rates for a specific 

anomaly across various combinations of input parameters.

Figure 5: Performance of the anomaly detection method in 

identifying various types of anomalies using an optimal set of 

input parameters.

Figure 6: Performance of the anomaly detection method in 

identifying various types of anomalies using a suboptimal set 

of input parameters.

This anomaly detection method relies on two 

inputs: the anomaly threshold (which determines 

the size of features flagged by the algorithm) and 

the alpha threshold (which specifies the types of 

features detected). A significant part of this project 

was determining the optimal combination of these 

to minimize false positives and false negatives.

In Fig. 7 and 8, the blue-highlighted regions indicate the ideal 

combination of the anomaly threshold and alpha threshold that 

minimizes both false positives and false negatives.

The results from Fig. 5 and 6 match what we expect, as once 

the anomaly size exceed the anomaly threshold, it is detected.
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