
Benchmarking Ticketing in Vectorized
Cuckoo Hash Table for Database Systems

Katherine Yue1; Shruthi Kunjur1; Ryan Marcus2
1Penn Undergraduate Mentoring Program, SEAS 2026 2University of Pennsylvania, CIS

Background

Results

Conclusion

Next Steps

Acknowledgments

 A hash table is a common computer data structure that stores a collection of key-value pairs, and are regularly used for data retrieval and aggregation, as they can efficiently
 search, insert, and delete within databases. It uses a hash function to compute an index from a given key into an array of slots, where it places the key and value, and a similar process is
performed to find the value for a key in a hash table. However, there are challenges such as collisions, where different keys hash to the same index. A cuckoo hash table is a type of hash table that resolves
collisions through an eviction process, ensuring efficient and consistent access times.

Hash tables are key in data science for the common practice of aggregating data, as large amounts of data need to be counted, combined, and used in various formats. In the past, the process of
aggregating data involved taking your data, creating a hash table with it, and then iterating row by row based on your desired aggregation process. As part of Penn’s new database prototype, FerricDB, we
sought to implement a vectorized approach to aggregation, specifically ticketing. Instead of scanning through rows, we scan through columns for the process of assigning distinct ”tickets” to keys.

Methodology We used the Rust language to implement our vectorized
 cuckoo hash table as well as built-in Linux tools, such as
perf, to evaluate the efficiency of our implementation. Furthermore, we
integrated our hash table with the FerricDB API, Penn’s existing high-
performance database prototype.

 We implemented our cuckoo hash table with optimized and vectorized lookup and insert methods. As the
 main use case for this implementation doesn’t involve deletions from the table, we didn’t focus on the
delete method. Using our hash table, we implemented a ticketing process, which assigns each row in a table a “ticket”.
This ticket is essentially an identifier for a key, and once we assign tickets to all the keys in the table, we can identify
existing keys, unique keys, and duplicated keys. Overall, this makes aggregation tasks easier and more efficient.

To evaluate our work, we utilized the perf tool for benchmarking, which is a tool that measures the performance of a
hash table’s methods (time and throughput). For our hash table implementation, our performance with the vectorized
insertion of 100,000 elements is shown below.

 Thank you to Professor Ryan Marcus and the
 PURM program for offering us the opportunity to be
a part of this impactful and stimulating project. We really enjoyed the summer
and are incredibly grateful to have gained such valuable research experience
through this program!

For our ticketing process, we implemented two strategies. One (on the top), as we proceed through the keys chunk by
chunk, we first calculate all the hash values for the chunk and then insert them one by one if appropriate. Two (on the
bottom), chunk by chunk, we first calculate all the hash values and their known ticket values and then iterate through
each key and value to see if a more updated retrieval is necessary. Our performance for both strategies is shown below
– note that the “i32 distinct” benchmark processes 1,000,000 distinct i32 values, the “i32 single” benchmark 1,000,000
integers that are the same value.

Comparatively to the original hash table and ticketing implementation, ours was marginally better in some, but not all
test cases.

 While there is still a lot of work to be done to improve the
 efficiency of the cuckoo hash table, we gained many insights
from incorporating ticketing and vectorizing numerous processes. After
implementing several optimization techniques on our hash table, we were
unable to discern a significant improvement in throughput. However, with the
improvements that we have been able to make, with further research, we are
confident that the efficiency of the hash table can be greatly improved.

 Our next steps would involve trying out different strategies for
 our get and insert functions, ultimately working towards
optimizing more and more features of the hash table. We also need to continue
to implement vectorization throughout our implementation as well as beyond
(which involves other aggregation methods, such as counting and finding the
minimum value in a table). There is still much to discover about how
vectorization would make a hash table faster, so further research and
continued development is necessary.

