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Introduction
Rett Syndrome (RTT) is a severe and progressive neurodevelopmental 
disorder that affects approximately 1 in 10,000 live female births, resulting 
in profound cognitive and physical disabilities (5). Most RTT cases are 
linked to mutations in the methyl-CpG-binding protein 2 (MeCP2) gene, with 
a notable pattern where increases in the frequency of these mutations 
correspond to a higher incidence of the disorder (3). MeCP2 plays a pivotal 
role in gene regulation, turning genes on and off in a manner essential for 
normal brain development (4). These mutations arise de novo, meaning 
they occur spontaneously and are not inherited. As MeCP2 is an X-linked 
gene, RTT predominantly affects females with two X chromosomes, 
compared to males, who typically experience more severe outcomes and 
early mortality due to their single X chromosome lacking a backup copy of 
the gene.  

One of the most common mutations associated with RTT is the T158M 
missense mutation, found in approximately 12% of cases (4). T158M mice 
demonstrate a loss of localization to heterochromatic foci and a 
redistribution of mutant MeCP2 to the nucleolus (2). This mutation disrupts 
the methyl-CpG binding domain (MBD) of MeCP2, impairing its ability to 
bind to methylated DNA. Normally, MeCP2 binds to DNA in heterochromatin 
regions. These heterochromatin regions exhibit liquid-like properties, 
forming condensates, which compartmentalize and concentrate molecules 
to facilitate complex gene regulatory processes. This mislocalization impairs 
chromatin regulation and leads to significant cellular dysfunction, 
contributing to the neurological symptoms seen in RTT.

Background
Condensate-modifying drugs (C-mods) offer a promising therapeutic approach 
aimed at redistributing mutant MeCP2 from the nucleolus back to its proper 
location in the chromatin-rich regions of the nucleus. A key dysfunction in RTT 
appears to be the pathological mislocalization of MeCP2 to nucleolar 
condensates, which presents a promising therapeutic target.  

Although the exact mechanisms by which C-mods restore MeCP2’s regulatory 
functions are not yet fully understood, it is hypothesized that redistributing 
MeCP2 to chromatin improves its DNA-binding capacity, potentially 
compensating for some of the functional deficiencies caused by the mutation. 
In doing so, C-mods may potentially reverse or reduce the neurological 
symptoms associated with RTT. This highlights the importance of precise 
MeCP2 regulation in maintaining proper neuronal function and brain 
development (1).

Results

Conclusion
Currently, no approved therapies directly address the loss of MeCP2 function 
central to Rett Syndrome (RTT). We hypothesize that, despite the T158M mutation 
impairing MeCP2's DNA-binding ability, higher protein levels may retain sufficient 
functionality to alleviate RTT pathology (3).  

The reduced levels of MeCP2 and phospho-riboprotein S6 observed in T158M 
mutants, compared to wild-type, further suggest that phospho-riboprotein S6 could 
serve as a direct readout of MeCP2 function due to its positive correlation with 
MeCP2 activity. C-mods may also help relocate mutant MeCP2 from nucleoli to 
chromatin, potentially mitigating the loss of function and restoring normal cellular 
processes. Biotin tagging of MeCP2 has proven to be a reliable method for 
assessing MeCP2 localization, and this research highlights the therapeutic 
potential of c-mods in treating RTT by improving MeCP2 chromatin localization and 
function.
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Methods & Procedures
in vivo condensate Mechanism of Action Studies: 

Immunohistochemistry: Primary Antibodies Used (1:1000 dilutions): 
• Rabbit anti-MeCP2 (1:1000 dilutions): Reduced MeCP2 levels in mutant 

samples (less intense staining indicates lower MeCP2). 
• Rabbit anti-nucleolin (1:1000 dilutions): Detect nucleolus location as nucleolin 

serves as a nucleolar marker. 
• Rabbit anti-phospho-riboprotein S6 (1:1000 dilutions): Serves as a direct 

readout for MeCP2 function. 

Immunostaining: 
• Brain sections were collected at the thickness of 50 um using the Cryostat 
• Staining was followed using 1x PBS for washes, and 10% NGS for blocking 
• Slices were stained with an anti-GFP antibody, conjugated with Goat anti-rabbit 

Alexa Fluor 488 and Steptavidin Dylight 650, at 1:1000 dilution in 1% NGS 
• DAPI staining was conducted at 1:1000 dilution in 1x PBS 
• Slices were transferred onto microscope slides, followed by mounting and seal 

Image Acquisition: 
• Immunofluorescence (IF) microscope was used to capture images of stained 

tissue slides.  
• For each corresponding antibody, the captured images were split into separate 

channels, adjusted brightness/contrast, and merged into adjusted layers. 
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